Modelling and Optimization of Simultaneous Removal of Ions (H2PO4-, NO3- and Cd2+) by Adsorption on Clay in Aqueous Solution by Using Response Surface Methodology

Adjoumani Yao Joseph *

Laboratory of Synthesis Industrial Processes and Environment (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny INP H-B BP 1093 Yamoussoukro, Côte d’Ivoire.

Abro Koutouan Désiré Martial

Laboratory of Synthesis Industrial Processes and Environment (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny INP H-B BP 1093 Yamoussoukro, Côte d’Ivoire.

Gueu Soumahoro

Laboratory of Synthesis Industrial Processes and Environment (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny INP H-B BP 1093 Yamoussoukro, Côte d’Ivoire.

Yao Kouassi Benjamin

Laboratory of Synthesis Industrial Processes and Environment (LAPISEN), Institut National Polytechnique Félix Houphouët Boigny INP H-B BP 1093 Yamoussoukro, Côte d’Ivoire.

*Author to whom correspondence should be addressed.


Abstract

This paper deals with the modeling and optimization of the simultaneous elimination of dihydrogen phosphate nitrate and cadmium ions in an aqueous solution using adsorption on a smectite clay. Pollutant concentration and retention time are the two parameters studied. The experimental domains investigated are respectively from 20 to 100 mg.L-1 and from 8 to 16 hours. The tests were conducted with 3g of clay in a 25 mL mixture solution at pH 5. This study has been carried out with Response Surface Methodology (RSM), using NEMROD software. A central composite Design (CCD) was used first to establish a mathematical model that governs the process. The use of Derringer’s overall function of desirability permitted to establish optimal conditions of adsorption. Thus, maximum abatement rates both for each ion have been obtained when the pollutant concentration was 43 mg.L-1 with an adsorption duration of 15 hours. The results of the purification rates were 30.6 %, 68.1 %, and 69.07 %, respectively for nitrate, dihydrogenophosphate, and cadmium ions. It is noticeable that clay can be used as an adsorbent for wastewater depollution from many pollutants at a time.

Keywords: Clay, experimental design, adsorption, response surface methodology


How to Cite

Joseph , A. Y., Martial , A. K. D., Soumahoro , G., & Benjamin , Y. K. (2023). Modelling and Optimization of Simultaneous Removal of Ions (H2PO4-, NO3- and Cd2+) by Adsorption on Clay in Aqueous Solution by Using Response Surface Methodology. Chemical Science International Journal, 32(5), 51–62. https://doi.org/10.9734/CSJI/2023/v32i5860

Downloads

Download data is not yet available.

References

UN WATER. Wastewater: an untapped resource. [Online]. Available: United Nations World Water Development Report 2017;203.

UN WATER. Wastewater—The untapped resource; The United Nations world water development report; 2017.

Available:http://creativecommons.org/licenses/by-sa/3.0/igo/.

Nikiema J, Figoli A, Weissenbacher N, Langergraber G, Marrot B, and Moulin B, Wastewater treatment practices in Africa - experiences from seven countries. Sustain. Sanit. Pract. 2013;14:26– 34.

Available:cgspace.cgiar.org/handle/10568/40210.

Pitois S, Jackson MH, Wood BJB. Sources of the eutrophication problems associated with toxic algae: An overview. Journal of Environmental Health. 2001;64(5):25– 32.

Aminy DE, Rusdiarso B, Mudasir M, Adsorption of Cd(II) ion from the solution using selective adsorbent of dithizone-modified commercial bentonite. Int. J. Environ. Sci. Technol. 2022;19(7):6399–6410,

DOI: 10.1007/s13762-021-03570-1.

Adjoumani YJ, Dablé PJMR, Kouassi KE, Gueu S, Assémian AS, Yao KB. Modeling and optimization of two clays acidic activation for phosphate ions removal in aqueous solution by response surface methodology. J. Water Resour. Prot. 2019;11(02):200–216. DOI: 10.4236/jwarp.2019.112012.

ORDER. ORDER N° 01164 of November 04, 2008 regulating discharges and emissions from installations classified for the protection of the environment; 2008. Available:https://www.envipur.com/docs/reglementation/ARRETE SIIC - REJECTIONS OF EMISSIONS.pdf

Baize D. Total levels of trace metal elements in soils (France). References and interpretation strategies. INRA Editions, Paris ; 1997.

Sun DT et al. Selective heavy metal removal from water by a metal-organic framework/polydopamine composite. ACS Central Science; 2018.

Bahnes Z. Activation of jujube kernels to obtain activated carbon. Doctoral Thesis, Abdelhamid Ibn Badis Mostaganem University, Algeria; 2018.

Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P. “Effect of heavy metals on, and handling by, the kidney.” Nephron Physiol. 2005;99:105–110,

Yapi YHA, Dongui BK, Barima YSS TA, Essis Y, Athéba P. “ Evaluation of metal pollution of groundwater and surface water in a gold mining environment in Hiré.” Int. J. Biol. Chem. Sci. 2014;8(3):1281- 1289.

DOI: 10.4314/ijbcs.v8i3.41.

Chouchane T, Chouchane S, Boukari A, Mesalhi A. “ Adsorption of binary mixture « Lead-Nickel » by kaolin.” J. Mater. Environ. Sci. 2015;924–941.

Aden M. “Adsorption of Pb (II) and Ni (II) ions on functionalized silica particles deposited on natural biopolymers for wastewater treatment.” Inorganic chemistry, Université Bourgogne Franche-Comté; 2020.

Kammoun R, Naili B, Bejar S. “Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product).” Bioresour. Technol. 2008;99(13):5602–5609.

DOI: 10.1016/j.biortech.2007.10.045.

Tinsson W. “ Experimental designs: constructions and statistical analyzes.” Springer Sci. Bus. Media. 2010;67:532. DOI: DOI 10.1007/978-3-642-11472-4_1.

Derringer G, Suich R. “Simultaneous optimization of several response variables.” J. Qual. Technol. 2018;12(4):214–219. DOI: 10.1080/00224065.1980.11980968.

Chakchouk A, Trifi L, Samet B, Bouaziz S. “Formulation of blended cement: Effect of process variables on clay pozzolanic activity.” Constr. Build. Mater. 2009;23(3):1365–1373.

DOI: 10.1016/j.conbuildmat.2008.07.015.

Feinberg M. "Validation of analytical methods: a chemometric approach to quality assurance in the laboratory", Ed MASSON; 1996.

Thiry M, Carrillo N, Franke C, Martineau N. “ Technique for preparing clay minerals for analysis by X-ray diffraction and introduction to the interpretation of diagrams. Technical report N° RT131010MTHI;” 2013.

AFNOR. "Water Trials. Determination of phosphates, polyphosphates and total phosphorus (spectrometric method"). In: Water quality. French Association for Standardization. In: Qualité de l’eau. Association Française de normalisation, Paris; 1994.

Dablé PJMR, Adjoumani YJ, Yao B, Ado G. “Wastewater dephosphorization using crude clays,” Int. J. Environ. Sci. Technol. 2008;5(1):35–42. DOI: 10.1007/BF03325995.

Bouguerra M. “ Study of the elimination of nitrate ions in agri-food effluents using a mesoporous organosilicate adsorbent,” Doctoral thesis, Université de Laval, Québec, Canada; 2010.

Pan L, Wang Z, Yang Q, Huang R. “Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel.” Nanomater. 2018;8:957- 972.

DOI: 0.3390/nano8110957.

Hamdi N, Srasra E. “Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite.” J. Environ. Sci. 2012;24(4):617–623. DOI: 10.1016/S1001-0742(11)60791-2.

Bassam R et al. “Studies on the removal of cadmium toxic metal ions by natural clays from aqueous solution by adsorption process.” J. Chem. 2021;2021.

DOI: 10.1155/2021/7873488.

Battas A, Gaidoumi El A, Ksakas A, Kherbeche A. “Adsorption study for the removal of nitrate from water using local clay.” Sci. World J. 2019;2019. DOI: 10.1155/2019/9529618.

. Mathieu PTLR D, Nony J. “New Efficient Methodology for Research using Optimal Design (NEMROD).” Software – L.P.R.A.I, Univ. Aix-Marseille III, France; 1998.

Goupy J. “Experimentals design,” Rev. Modul. 2006;34:74–116.

Available: http://www.modulad.fr/archives/numero-34/Goupy-34/goupy-34.pdf.

Vaillé J, Goupy J. “ Build and interpret a complete factorial design,” Rev. Modul. 2006;35:1–5.

Draper NR, Box GEP. “Empirical model-building and response surfaces.” Biometrics. 1990;46(1):283–284.

Joglekar AM, May AT. “Product excellence through design of experiments.” Cereal Foods World. 1987;32:857–868.

Lambert A, Drogui P, Daghrir R, Zaviska F, Benzaazoua M. Removal of copper in leachate from mining residues using electrochemical technology. J. Environ. Manage. 2014;133:78–85. DOI: 10.1016/j.jenvman.2013.11.036