Isolation, Characterization and Evaluation of the Antioxidant Potential of Different Extracts and Biomolecules of the Roots of Paullinia pinnata (Sapindaceae)

Adjadi Jeanne Bervis

Laboratoire de Constitution et Réaction de la Matière (LCRM), Université Félix Houphouet Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire and AM2N, ICGM, Université de Montpellier, ENSCM, CNRS, 8 Rue de l’Ecole Normale, 34296 Montpellier, France.

Kassi Amian Brise Benjamin *

Laboratoire de Constitution et Réaction de la Matière (LCRM), Université Félix Houphouet Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire.

Ballo Daouda

Laboratoire de Constitution et Réaction de la Matière (LCRM), Université Félix Houphouet Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire.

Seri Seri Chardin

Laboratoire de Constitution et Réaction de la Matière (LCRM), Université Félix Houphouet Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire.

Virieux David

AM2N, ICGM, Université de Montpellier, ENSCM, CNRS, 8 Rue de l’Ecole Normale, 34296 Montpellier, France.

Pirat Jean-Luc

AM2N, ICGM, Université de Montpellier, ENSCM, CNRS, 8 Rue de l’Ecole Normale, 34296 Montpellier, France.

Soro Yaya

Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles, Institut National Polytechnique Félix Houphouët-Boigny, BP 991 Yamoussoukro, Côte d’Ivoire.

Danho Doubou

Laboratoire de Constitution et Réaction de la Matière (LCRM), Université Félix Houphouet Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire.

Adjou Ané

Laboratoire de Constitution et Réaction de la Matière (LCRM), Université Félix Houphouet Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire.

*Author to whom correspondence should be addressed.


Abstract

Cardiovascular diseases, which are now among the leading causes of death in the world, are increasingly prompting the search for new antioxidant remedies. It is in this context that the chemical study and evaluation of the antioxidant potential of the different extracts of Paullinia pinnata (Sapindaceae), a plant used in the traditional treatment of cardiovascular diseases was carried out. The assessment of antioxidant potential was carried out by the ABTS free radical scavenging method. Phytochemical study of extracts (ethyl acetate and aqueous) of Paullinia pinnata roots isolated epicatechin, laproanthocyanidin A-2, epicatechin-(2β→O→7, 4β→8)-epicatechin-(4β→8)-epicatechin (cinnamtannin B-1) and O-β-D-glucopyranosyloxy-4-methyl-2(5H)-furanone. These compounds were first isolated from the genus Paullinia pinnata from Côte d'Ivoire. Their structures are elucidated by spectroscopic analyses (NMR and MS) in comparison with data from the literature.

Keywords: Cardiovascular diseases, Paullinia pinnata, antioxidant potential


How to Cite

Bervis, A. J., Benjamin , K. A. B., Daouda, B., Chardin , S. S., David , V., Jean-Luc, P., Yaya , S., Doubou , D., & Ané , A. (2023). Isolation, Characterization and Evaluation of the Antioxidant Potential of Different Extracts and Biomolecules of the Roots of Paullinia pinnata (Sapindaceae). Chemical Science International Journal, 32(3), 27–43. https://doi.org/10.9734/CSJI/2023/v32i3846

Downloads

Download data is not yet available.

References

World Health Organization; Cardiovascular diseases; 2022.

Eddouks M, Ouahidi ML, Farid O, Moufid A, Khalidi A, Lemhadri A. The use of medicinal plants in the treatment of diabetes in Morocco. Phytotherapy. 2007; 5(4):194-203.

World Health Organization. Cardiovascular Diseases, Promoting the Role of Traditional Medicine in Health Systems: Strategy for the African Region (Document AFR/RC50/9), Burkina Faso, 28 August-02 September 2000

Iserin P, Moulard F, Rachel R, Biaujeaud M, Ringuet J, Bloch J, Ybert E, Vican P, Masson M, Moulard F, Restellini JP, Botrel A. Larousse: encyclopedia of medicinal plants (2 ed), identification, preparation, care, Paris. 2001;155-291.

Bougandoura N, Bendimerad N. Nature & technologie, B-sciences agronomiques et biologiques. 2013;09:14.

Zamblé A, Carpentier M, Kandoussi A, Sahpaz S, Petrault O, Ouk T et al. Paullinia pinnata extracts rich in polyphenols promote vascular relaxation via endothelium-dependent mechanisms. J Cardiovasc Pharmacol. 2006;47(4):599-608.

Annan K, Govindarajan R, Kisseih E. Wound Healing and Cytoprotective Actions of Paullinia pinnata L. Pharmacogn J. 2010;2(10):345-50.

Tamokou JD, Chouna JR, Fischer-Fodor E, Chereches G, Barbos O, Damian G et al. PLOS ONE. 2006;8(2):e55880.

DOI: 10.1371/journal.pone.005580.

Iful ES. Studies on the antivenom activities of the aqueous extracts of Paullinia pinnata and Detarium microcarpum against Echis carinatus (carpet viper) venom. PhysiolD. 2008:1-188.

Maje IM, Anuka JA, Hussaini IM, Katsayal UA, Yaro AH, Magaji MG et al. Nig. J Pharm Sci. 2007;6(2):67-7.

Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007;103(3):829-38.

DOI: 10.1016/j.foodchem.2006.09.033.

Strack D. 10—Phenolic metabolism. Academic Press: London, UK. 1997 Feb 3:387-416.

DOI: 10.1016/b978-012214674-9/50011-4.

Latif A, Khan TF, Afaq SH. Pharmacologyonline. 2006;3:575-80.

Lou H. A-type proanthocyanidins from peanut skins. Phytochemistry. 1999;51(2): 297-308.

DOI: 10.1016/S0031-9422(98)00736-5.

Lokvam J, Coley PD, Kursar TA. Phytochemistry. 2003;65(3):351-8. DOI: 10.1016/j.phytochem.11.012.

Baldé AM, Pieters LA, Gergely A, Kolodziej H, Claeys M, Vlietinck AJ. A-type Proanthocyanidins from stem-bark of Pavetta owariensis. Phytochemistry. 1991; 30(1):337-42. DOI: 10.1016/0031-9422(91)84150-Q.

Foo LY, Karchesy JJ. Procyanidin polymers of Douglas fir bark: structure from degradation with phloroglucinol. Phytochemistry. 1989;28(11):3185- 90. DOI: 10.1016/0031-9422(89)80303-6.

Cronjé A, Burger JFW, Vincent Brandt EV, Kolodziej H, Ferreira D. Assessment of 3,4trans and 3,4-cis relative configurations in the a-series of (4,8)-linked proanthocyanidins. Tetrahedron Lett. 1990; 31(26):3789-92.

DOI: 10.1016/S0040-4039(00)97472-0.

Santos-Buelga C, Kolodzieij H, Treutter D. Procyanidin trimers possessing a doubly linked structure from Aesculus hippocastanum. Phytochemistry. 1995; 38(2):499-504. DOI: 10.1016/0031-9422(94)00637-9.

Freitas VAPd, Glories Y, Bourgeois G, Vitry C. Characterisation of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry. 1998;49(5): 1435-41.

DOI: 10.1016/S0031-9422(98)00107-1.

Le Roux EL, Doco T, Sarni-Manchado P, Lozano Y, Cheynier V. A-type proanthocyanidins from pericarp of Litchi chinensis. Phytochemistry. 1998;48(7): 1251-8. DOI: 10.1016/S0031-9422(97)01070-4.

Vivas N, Glories Y, Pianet I, Barbe B, Laguerre M. A complete structural and conformational investigation of procyanidin A2 dimer. Tetrahedron Lett. 1996;37(12): 2015-8. DOI: 10.1016/0040-4039(96)00187-6.

Kamiya K, Watanabé C, Endang H, Umar M, Satake T. Studies on the constituents of bark of Parameria laevigata Moldenke. Chem Pharm Bull (Tokyo). 2001;49(5): 551-7. DOI: 10.1248/cpb.49.551

Nonaka G, Morimoto S, Nishioka I. Gen. ichiro, M. Satoshi and L. Nishioka. J Chem Soc Perkin Trans 1. 1983:2139-45. DOI: 10.1039/P19830002139.

Braekman JC, Daloze D, Pasteels JM. Cyanogenic and other glucosides in a neo-guinean bug Leptocoris isolata: possible precursors in its host-plant. Biochem Syst Ecol. 1982;10(4):355-64. DOI: 10.1016/0305-1978(82)90010-2.

Prakash M, Basavaraj BV, Chidambara Murthy KN. Biological functions of epicatechin: plant cell to human cell health. J Funct Foods. 2019;52:14-24. DOI: 10.1016/j.jff.2018.10.021.

Yu D, Huang T, Tian B, Zhan J. Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods. 2020;9(12):1774. DOI: 10.3390/foods9121774

Ogawa S, Kimura H, Niimi A, Katsube T, Jisaka M, Yokota K. Fractionation and structural characterization of polyphenolic antioxidants from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME). J Agric Food Chem. 2008; 56(24): 12046-51. DOI: 10.1021/jf802506r

Yokota K, Kimura H, Ogawa S, Akihiro T. Analysis of A-Type and B-Type Highly Polymeric Proanthocyanidins and Their Biological Activities as Nutraceuticals. J Chem. 2013;2013:1-7. DOI: 10.1155/2013/352042.

Taher M. isolation and in vitro antidiabetic properties of a proanthocyanidin from Cinnamomumzeylanicum [thèse] soutenue en; 2005.

Yokozawa T, Cho EJ, Park CH, Kim JH. Protective Effect of Proanthocyanidin against Diabetic Oxidative Stress. Evid Based Complement Alternat Med. 2012; 2012:623879. DOI: 10.1155/2012/623879

Kimura H, Ogawa S, Sugiyama A, Jisaka M, Takeuchi T, Yokota K. Anti-obesity effects of highly polymeric proanthocyanidins from seed shells of Japanese horse chestnut (Aesculus turbinata Blume). Food Research International. 2011;44(1):121-6. Available:https://DOI.org/10.1016/j.foodres.2010.10.052

Available:https://en.wikipedia.org/wiki/Protoanemonin; consulté le 16/11 /2022

Available:http://www.horsedvm.com/poisonous/buttercup/; consulté le 16/11/2022